Protocol Buffer 会将对象序列化为二进制数据。在本文中,我们简单了解下它是如何对数据进行编码的,即:了解下底层的编码格式。当然并非必须的,日常使用 Protocol Buffer 不需要...
基尼指数是决策树算法中用于评估特征分裂质量的一个关键指标,分裂后子节点的基尼指数越低,表示子节点的纯净度越高。 1. 基尼不纯度 基尼不纯度(Gini impurity)是衡量变量不纯度的一个指标。基...
在 scikit-learn 的决策树实现中,使用 CCP(Cost-Complexity Pruning)代价复杂度剪枝,用于避免过拟合并提高决策树的泛化能力。 1. 剪枝原理 决策树中包含了很多子...
信息增益是决策树算法中用于特征选择的一个重要指标。在构建决策树时,我们需要确定哪个特征最能有效地分割数据,使得子节点的纯度最高。信息增益就是衡量这种分割能力的指标。 信息增益的计算基于信息熵(或熵)的...
决策树(Decision Tree)是一种直观且易于理解的机器学习算法,它可以处理分类和回归问题。 课程学习目标: 授课环境:win11 + pycharm 2021.1.3 + python 3.8...
在学习决策树原理之前,我们先感性的了解下决策树的构建和推理过程、以及 API 的使用。 1. 分类决策树 分类决策树基于训练数据构建一个树状结构,每个节点代表一个特征,每个分支代表一个可能的答案,最终...
构建决策树时,需要根据训练数据计算所有特征的最佳分裂点,来实现分类决策树构建。在 scikit-learn 的分类决策树实现中,主要用到了两种方法: 接下来,我们就要去学习和掌握这两种分裂增益原理和计...
在构建回归决策树时,我们需要找到最优的分裂点,以最小化子集的均方误差。回归决策树也有自己的一些分裂准则,我们将详细探讨这些分裂准则的计算方法,并介绍如何应用它们来构建回归决策树。 回归决策树(Deci...
过拟合(Overfitting)是指模型在训练数据上表现得很好,但在未见过的测试数据上表现较差的现象。无论是传统机器学习算法、还是深度学习算法都会出现过拟合问题。 1. 过拟合方法 我们前面构建的分类...
Scikit-Learn(sklearn)是一个用于机器学习的Python库,其中包含了大量用于分类、回归、聚类和其他机器学习任务的算法和工具。在sklearn中,决策树是其中的一个常用算法。下面,将...
Word2Vec 是 Google 在 2013 年推出的一种用于生成词向量的模型,它通过无监督学习的方式从大量文本数据中学习单词的语义关系。即:通过训练一个浅层的神经网络模型来学习如何将每个词转换为...
joblib 是一个Python库,用于在Python中高效地保存和加载对象,特别是那些包含大型数据数组的对象。它在机器学习领域中非常有用,因为经常需要保存训练好的模型或中间数据。 除了提供对象序列化...
SoftMax 函数是深度学习和机器学习中一个非常重要的概念,主要用于处理多分类问题。Softmax 函数能够将一个实数向量映射为一个概率分布,使得输出向量的所有元素都在 0 到 1 之间,并且它们的...
最新评论