高斯混合模型(Gaussian Mixture Model,GMM)是一种基于概率的无监督学习模型,通过假设数据由多个高斯分布组成来进行数据建模,在机器学习、统计学和信号处理等领域有广泛的应用。 1....
在本节课程中,我们将探讨高斯混合模型(GMM)如何对新数据进行聚类。即:当我们输入一条新的数据时,模型会基于先前学习到的各个高斯分布的参数来估计该数据属于每个类别的概率。接下来,我们将详细了解这一过程...
GMM 假设数据是由多个高斯分布混合而成,接下来,我们将会探讨 GMM 是如何根据训练数据得到这些不同的高斯分布参数: 估计高斯混合模型的参数,我们并不知道数据属于哪个分布,这是典型的包含隐藏变量的参...
scikit-learn 中 GaussianMixture 类是对高斯混合模型算法的实现,它包含了一些用于控制混合高斯模型(GMM)的初始化、训练方式和模型的其他设置。 1. 参数 1.1 基本参数...
在 Python 编程中,掌握对象拷贝的细节至关重要。虽然对象拷贝看似是一个简单的操作,但在背后涉及到多个层次的实现机制。尤其是拷贝协议,它们为我们提供了强大的工具来控制对象的复制行为。通过合理地使用...
std::ref 是 C++ 标准库中的一个工具,用于将对象封装为引用包装器 ,从而实现将原本作为值传递、需要拷贝的对象,能够以避免对象拷贝的方式传递。 问题场景:一个对象传递一个以值方式接受参数的函...
std::bind 是 C++11 引入的一个函数适配器,它可以将函数或可调用对象与其参数绑定在一起,在调用时,减少传入的参数数量,从而简化函数调用。 1. 使用 2. 探讨 这一小节主要探讨l两个话...
ChatGLM3-6B 是一个 ChatGLM 系列的开源对话模型,是由清华大学 KEG 实验室和智谱 AI 共同开发。该模型具备出色的中文和英文理解和生成能力,特别适合多轮对话、文本生成、问答等自然...
new 和 delete 是 C++ 中非常重要的两个关键字,其作用是实现动态对象的管理。正确掌握它们的使用方法对于有效管理程序的内存、提高性能,以及避免内存泄漏等问题至关重要,是编写健壮 C++ 程...
Google Protocol Buffers(简称 Protobuf)是一种由 Google 开发的,用于定义结构化数据并在不同的系统或编程语言之间高效地传输和存储数据。它可以看作是一种更轻量且更高...
Protocol Buffers(protobuf)主要用于在不同系统、不同语言之间进行高效的数据序列化和反序列化。从而实现跨平台、跨语言的数据交互、网络通信、持久化存储等问题的工具。 在 C++ 中...
Protocol Buffers 使用了一种中立、平台无关的语言来定义数据结构,使得不同编程语言、不同平台之间能够进行数据交互。Protocol Buffers 目前主要有 Proto2 和 Prot...
Google Protocol Buffers(简称 Protobuf)是一种由 Google 开发的数据序列化格式,用于定义结构化数据并在不同的系统或编程语言之间高效地传输和存储数据。它可以看作是一...
Protobuf 中的类型会对应到 CPP 中的对象,我们需要了解如何操作这些对象,以及如何序列化和反序列化这些对象。 1. 定义数据 创建 sample.proto 文件,定义数据如下: 接下来,使...
虚函数(virtual function)指的是 C++ 中使用 virtual 关键字声明的函数。从表面看起来仅仅是一个函数的声明,但是其背后有着一套较为复杂的机制,通过这套机制能为 C++ 引入一...
最新评论