对于随机森林算法而言,预测过程非常简单,易于理解。理解的重点是其如何训练多个基学习器来构建强学习器。 1. 有放回采样 随机森林基于原始训练集通过有放回的采样(Bootstrap Sampling)产生不同的数据子集来训...
scikit-learn 提供了 RandomForestClassifier 和 RandomForestRegressor 两个随机森林的实现,用于分类和回归任务。为了能够更好的使用随机森林,我们需要详细了解该实现的...
在 Python 中存在 int、str、float、bool 等基本数据类型,也存在 list、tuple、set、dict 这样的容器数据类型。这些数据类型被划分为可变(mutable)和不可变(immutable)...
Complement Naive Bayes (CNB) 是对多项式朴素贝叶斯 (Multinomial Naive Bayes, MNB) 的一种改进。它主要针对多项式朴素贝叶斯在处理类别不平衡问题时表现不佳的情况进行...
前置要求:了解 Word2Vec 中的 Skip-Gram 和 CBOW 模型,以及负采样、层次 SoftMax 知识。 FastText 在 2016 年发布时,是当时最先进的词嵌入模型之一。 它具有轻量、速度快等优点...
词向量就是将自然语言中的词使用数值向量表示,例如我们将每个词使用 5 维向量表示: 词向量可以是任意的维度,32、64、512、768、1024… 等等。将文本表示为数值向量之后,就可以使计算机解决很多自然语...
FastText 的预训练模型通常是使用大规模文本语料库进行训练得到的,因此可以捕获单词的语义和语法信息。这些预训练模型的优势在于它们可以为各种语言和领域提供通用的语义表示,从而在具有限制的数据情况下提高模型的性能。 1...