对联是中国传统文化中的一项独特艺术形式,它不仅要求上下句字数相同,还要对仗工整、意义相对。随着人工智能和自然语言处理技术的进步,如何让机器自动生成符合对联规律的文本,变得越来越有趣也越来越可行。接下来,我们将一起探讨如何...
GPT-2(Generative Pre-trained Transformer 2)是 OpenAI 开发的一种基于 Transformer 结构的自回归语言模型。它以无监督学习的方式在大规模文本数据上进行训练,能够生...
近年来,随着大型语言模型(LLM)的发展,基于文本语义的图像检索技术取得了显著进步。这些模型通过理解复杂的自然语言描述,能够更准确地捕捉文本的语义,从而提高检索的精度和效率。 基于文本语义的图像检索是一种利用自然语言描述...
Zero-Shot Learning(零样本学习,ZSL) 是机器学习中的一种技术,指的是模型在没有见过某些类别的训练数据的情况下,仍然能够对这些新类别进行正确的预测。这种能力使得模型能够泛化到未见类别,减少对标注数据的...
对抗生成网络(Generative Adversarial Network)是一种深度学习模型,它通过两个神经网络生成器(Generator)和判别器(Discriminator)之间的对抗过程进行训练。通过这种对抗过程...
本文将从零开始,详细讲解如何使用递归神经网络(RNN/GRU/LSTM)实现文本情感分类。我们将基于 PyTorch 从头构建一个模型,并应用于情感分析任务。内容涵盖数据预处理、构建词汇表、分词器、模型搭建与训练,最终完...
直接微调(全量微调)会更新模型的所有参数,根据特定数据集对模型的权重进行全面优化。这种方式能够充分利用模型的全部参数来适应新任务,理论上可以获得最佳性能,但需要大量的计算资源和时间。 LoRA(Low-Rank Adap...