感知机(Perceptron)是1958 年由弗兰克·罗森布拉特(Frank Rosenblatt)提出的一个经典线性分类算法。它是机器学习领域最早提出的基于数学规则进行分类的模型之一,适用于解决二分类问题。 作为一种线...
线性判别分析(Linear Discriminant Analysis,简称 LDA)是一种经典的统计学方法,主要用于 特征降维 和 分类问题。 它的核心思想是:寻找一个最佳的线性投影,使得投影后的数据在新空间中,不同类...
主成分分析(PCA,Principal Component Analysis)是一种常用的数据降维技术。数据降维是指将高维数据转换为低维数据的过程,同时尽可能保留原始数据的重要信息。通过降维可以: 1. 基本思想 PCA...
高斯混合模型(Gaussian Mixture Model,GMM)是一种基于概率的无监督学习模型,通过假设数据由多个高斯分布组成来进行数据建模,在机器学习、统计学和信号处理等领域有广泛的应用。 1. 基本理解 假设:我...
在本节课程中,我们将探讨高斯混合模型(GMM)如何对新数据进行聚类。即:当我们输入一条新的数据时,模型会基于先前学习到的各个高斯分布的参数来估计该数据属于每个类别的概率。接下来,我们将详细了解这一过程的具体步骤。 1. ...
GMM 假设数据是由多个高斯分布混合而成,接下来,我们将会探讨 GMM 是如何根据训练数据得到这些不同的高斯分布参数: 估计高斯混合模型的参数,我们并不知道数据属于哪个分布,这是典型的包含隐藏变量的参数估计问题。对于这个...
scikit-learn 中 GaussianMixture 类是对高斯混合模型算法的实现,它包含了一些用于控制混合高斯模型(GMM)的初始化、训练方式和模型的其他设置。 1. 参数 1.1 基本参数 1.2 covar...
多头自注意力机制(Multi-Head Self-Attention)是深度学习中一种用于处理序列数据的重要机制,广泛应用于自然语言处理(NLP)和计算机视觉等领域。它最早出现在 Transformer 模型中。 1. ...
梯度下降算法是一种用于寻找函数最小值的优化方法。在机器学习中,常用于训练模型,帮助我们找到模型参数(比如权重和偏置)的最佳值,以使模型的预测误差(损失函数)最小。 想象你站在一个山顶上,目标是找到最低的山谷(最小值)。你...
ChatGLM3-6B 是一个 ChatGLM 系列的开源对话模型,是由清华大学 KEG 实验室和智谱 AI 共同开发。该模型具备出色的中文和英文理解和生成能力,特别适合多轮对话、文本生成、问答等自然语言处理任务。 模型...
自动混合精度是一种能够提升训练效率的方法。它通过减少训练过程中的显存使用,从而提高 batch_size 大小,加快模型训练。在 PyTorch 中张量默认使用的是 float32 类型,如果我们能够使用 float16...
门控循环单元(Gated Recurrent Unit, GRU)是一种改进的循环神经网络(RNN)架构,旨在解决传统 RNN 在处理长序列时面临的梯度消失问题。GRU 由 KyungHyun Cho 等人在2014年提...
长短期记忆网络(Long Short-Term Memory,LSTM)是一种特殊的循环神经网络(RNN),与传统的 RNN 相比,在处理涉及较长距离时间依赖的任务中表现出更强的能力。 1. 算法原理 LSTM 为了解决...
循环神经网络(Recurrent Neural Network, RNN)是一类用于处理序列数据的神经网络。 什么是序列数据?序列数据是指按照一定顺序排列的数据集合,其中的每个元素被称为序列的一个项。序列数据可以是有限的...