SoftMax 函数是深度学习和机器学习中一个非常重要的概念,主要用于处理多分类问题。Softmax 函数能够将一个实数向量映射为一个概率分布,使得输出向量的所有元素都在 0 到 1 之间,并且它们的和为 1。 层次 S...
聚类(Clustering)指的是将一组数据点按照某种规则或者方法分成多个组或簇,使得同一组内的数据点在某种意义上更相似,而不同组之间的数据点相对较不相似。 聚类时,可以基于数据分布、基于数据密度、基于数据相似度、基于图...
HOG(Histogram of Oriented Gradients)是一种用于图像处理和计算机视觉任务的特征描述方法,它通常用于目标检测和物体识别。HOG 特征是一种用于描述图像中局部纹理和形状的特征向量,其主要思想...
这篇文章我想讲解的是 scikit-learn 中 SVC 的二分类、多分类场景下 ovo、ovr 决策函数的计算过程,以了解 SVC 进行推理时的逻辑。从而加深对 SVC 的理解。 决策函数公式得到决策值之后,直接判断...
软间隔支持向量机在处理线性不可分问题时引入,允许一些训练样本出现在间隔内部的概念。这是通过引入松弛变量(slack variables)来实现的,它们允许一些样本出现在错误的一侧,从而使模型更加健壮并能够容忍噪声和离群值...
1. SVM 目标函数 支持向量机的求解目标是:训练时,在能够将所有样本正确分类的前提下,追求间隔最大化。 如何表示最大间隔?我们把两条边界的直线用如下公式表示: 那我们要求解的支持向量机就可以表示为: 当 wx + b...
核函数是一种在机器学习和统计学中广泛应用的数学函数,它用于将数据从原始特征空间映射到更高维度的特征空间,以便更容易地解决一些问题,尤其是在支持向量机(SVM)等算法中。核函数的主要作用是在高维空间中进行非线性映射,而无需...
Sobel 算子是一种常用的图像处理工具,它描述了图像中每个像素点处的亮度或颜色值变化方向和强度。它通常用于分析图像的边缘、纹理、形状和其他特征。 在二维图像中,梯度通常是两个分量的矢量,分别表示在水平和垂直方向上的变化...
在 scikit-learn 机器学习框架中,sklearn.naive_bayes.MultinomialNB 是对多项式朴素贝叶斯算法的工程实现。接下来,通过一个例子能够理解: 算法的拟合和推理的计算过程; 拉普拉斯...
转置卷积核(Transpose Convolution Kernel)是深度学习中用于进行反卷积操作的核心组件之一。虽然有时也被称为 “逆卷积”,但实际上它用于执行上采样操作,而不是数学上的卷积的...
对抗生成网络(Generative Adversarial Network,GAN)是一种深度学习模型,由生成器(Generator)和判别器(Discriminator)组成,通过对抗训练的方式来生成逼真的数据。
在 Transformer 模型中,位置编码(Positional Encoding)是一种用来表示输入序列中每个 token 在序列中位置信息的技术。与 RNN 和 CNN 不同的是,Transformer 是基于自注...
多项式朴素贝叶斯(Multinomial Naive Bayes)是朴素贝叶斯分类器的一种变体,主要用于文本分类任务。它是一种基于概率的分类算法,通常适用于处理离散型特征,特别是在文本分类问题中表现良好。 我们以下面数据...
伯努利朴素贝叶斯(Bernoulli Naive Bayes)分类器是一种基于贝叶斯定理的概率分类器,常用于处理文本分类等离散数据。它假设特征之间是条件独立的,并且每个特征都遵循伯努利分布,即每个特征只有两个可能的取值(...