
LLaMA-Factory 是一个开源的大规模语言模型(LLM)训练与微调框架,它能够简化大型语言模型的微调过程,使用户能够在无需编写代码的情况下,对多种预训练...

pickle 是 Python 中用于序列化和反序列化对象的模块。序列化是将对象转换为字节流的过程,反序列化是将字节流还原为对象的过程。它常被用来: 但是,使用...

在传统的文本分类任务中,我们通常依赖监督学习方法,比如朴素贝叶斯、支持向量机,或者 BERT 这样的深度学习模型。但这些方法存在三个关键限制: 这种传统方法的不...

Ollama 是一个开源的人工智能平台,它主要用于提供强大的 AI 模型接口,并帮助开发者和团队快速构建、集成和管理 AI 应用。Ollama 通过提供本地化的...

std::lock 是一个 C++ 用于避免死锁的工具,用于一次性锁住多个互斥锁(std::mutex),它通过确保锁定顺序一致,避免了死锁的发生。死锁是指程序...

线性判别分析(Linear Discriminant Analysis,简称 LDA)是一种经典的统计学方法,主要用于 特征降维 和 分类问题。 它的核心思想是...

std::async 是 C++11 引入的一个工具函数,它主要用于在程序中创建 异步任务、延迟任务。本篇文章将通过设计的 6 个示例程序来展示如何利用 std...

在现代软件开发中,并发编程成为提升性能的关键。无论是处理大量数据、提升响应速度,还是高效利用多核 CPU,多线程编程都至关重要。在 C++ 中 通过使用 std...

主成分分析(PCA,Principal Component Analysis)是一种常用的数据降维技术。数据降维是指将高维数据转换为低维数据的过程,同时尽可能保...

Google gRPC(Google Remote Procedure Call)是一个高性能、开源的远程过程调用框架,它允许客户端直接调用远程服务器上的方法,...

高斯混合模型(Gaussian Mixture Model,GMM)是一种基于概率的无监督学习模型,通过假设数据由多个高斯分布组成来进行数据建模,在机器学习、统...

在本节课程中,我们将探讨高斯混合模型(GMM)如何对新数据进行聚类。即:当我们输入一条新的数据时,模型会基于先前学习到的各个高斯分布的参数来估计该数据属于每个类...

GMM 假设数据是由多个高斯分布混合而成,接下来,我们将会探讨 GMM 是如何根据训练数据得到这些不同的高斯分布参数: 估计高斯混合模型的参数,我们并不知道数据...

scikit-learn 中 GaussianMixture 类是对高斯混合模型算法的实现,它包含了一些用于控制混合高斯模型(GMM)的初始化、训练方式和模型的...

在 Python 编程中,掌握对象拷贝的细节至关重要。虽然对象拷贝看似是一个简单的操作,但在背后涉及到多个层次的实现机制。尤其是拷贝协议,它们为我们提供了强大的...

终身学习者 | 知识桥接者
我是一名 80 后,写过多年代码,讲过很多年课,积累了丰富经验。如今,想把这些经验整理,通过我的博客分享给大家。


冀公网安备13050302001966号
最新评论