Albert(A Lite Bert For Self-Supervised Learning Of Language Representations)是对 Bert 的改进,其主要思想就是用更少的参...
命名实体识别(Named Entity Recognition,简称 NER)是自然语言处理(NLP)中的一项重要任务,旨在从非结构化文本中识别并分类具有特定意义的实体,如人名、地名、机构名、时间表达...
当看到 weight decay 时,从字面意思看是权重参数衰减,很容易让人觉得它和 L2 正则化是等价的,因为 L2 正则化也能让权重变小。但实际上,两者的概念和实现位置并不相同。 L2 正则化通常...
书接上回,上篇文章介绍了 7 种学习率的调整策略,PyTorch 1.11 版本中共有 14 种,本篇文章接着介绍剩下的 7 种学习率调整策略。 lr_scheduler.CosineAnnealin...
torch.optim.lr_scheduler 提供了动态调整学习率的方法。在使用的时, Learning Rate Scheduler 一般在优化器的更新参数之后调用。另外,我们也可以在程序中使用...
STL-10 是一个用于图像识别和生成任务的数据集,训练集共计 5000 张图片,测试集共计 8000 张,另外包含 100000 张无标签图像,适用于无监督和半监督学习。图像尺寸为 96×96,适合...
PEGASUS 是一种编码器-解码器模型,接下来我们基于开源的 PEGASUS 预训练模型来微调自己的生成式文本摘要模型。感谢 https://huggingface.co/IDEA-CCNL 给开源...
伯努利朴素贝叶斯(Bernoulli Naive Bayes)分类器是一种基于贝叶斯定理的概率分类器,常用于处理文本分类等离散数据。它假设特征之间是条件独立的,并且每个特征都遵循伯努利分布,即每个特征...
局部敏感哈希索引(Locality-Sensitive Hashing,LSH)是一种用于高维数据检索的技术,特别适用于近似最近邻搜索(Approximate Nearest Neighbor Sea...
Sobel 算子是一种常用的图像处理工具,它描述了图像中每个像素点处的亮度或颜色值变化方向和强度。它通常用于分析图像的边缘、纹理、形状和其他特征。 在二维图像中,梯度通常是两个分量的矢量,分别表示在水...
AUC(Area Under the Curve)是一种常用二分类评估方法,它指的是 ROC 曲线(Receiver Operating Characteristic Curve)下的面积。 1. R...
冀公网安备13050302001966号