GBDT(Gradient Boosting Decision Tree,梯度提升树)本质上是一个二分类模型。它通过不断迭代地拟合前一轮模型的负梯度,逐步提升模型的预测精度。在二分类任务中,GBDT ...
nn.Identity 是 PyTorch 中的一个层,它的作用是不做任何改变地传递输入数据。它在前向传播时会返回输入数据本身,而不对其进行任何处理或变换。 这样的一个实现,在大多数人看来似乎没有什么...
AlexNet 是 2012 年 ImageNet 竞赛冠军获得者 Hinton 和他的学生 Alex Krizhevsky 设计的。AlexNet 把CNN 的基本原理应用到了很深很宽的网络中。主要...
在自然语言处理(NLP)任务中,自动评估文本生成质量是一个核心问题。例如,在机器翻译、自动摘要、文本生成等任务中,我们需要度量生成文本与参考文本的相似度。Rouge(Recall-Oriented U...
线性回归是机器学习中的基础算法之一,通过最小化预测值和真实值之间的误差来拟合数据。在本教程中,我们将使用 PyTorch 从零开始构建一个线性回归模型,并拆解成关键部分,以便更好地理解 PyTorch...
卷积核(Convolution Kernel)是卷积神经网络(CNN)中的核心组件之一,通常用于图像处理和深度学习模型中。它是一个小的矩阵,用于对输入图像进行卷积操作,从而提取图像中的特征。卷积核通过...
Albert(A Lite Bert For Self-Supervised Learning Of Language Representations)是对 Bert 的改进,其主要思想就是用更少的参...
命名实体识别(Named Entity Recognition,简称 NER)是自然语言处理(NLP)中的一项重要任务,旨在从非结构化文本中识别并分类具有特定意义的实体,如人名、地名、机构名、时间表达...
当看到 weight decay 时,从字面意思看是权重参数衰减,很容易让人觉得它和 L2 正则化是等价的,因为 L2 正则化也能让权重变小。但实际上,两者的概念和实现位置并不相同。 L2 正则化通常...
书接上回,上篇文章介绍了 7 种学习率的调整策略,PyTorch 1.11 版本中共有 14 种,本篇文章接着介绍剩下的 7 种学习率调整策略。 lr_scheduler.CosineAnnealin...
冀公网安备13050302001966号