对抗生成网络(Generative Adversarial Network)是一种深度学习模型,它通过两个神经网络生成器(Generator)和判别器(Disc...
GPT-2(Generative Pre-trained Transformer 2)是 OpenAI 开发的一种基于 Transformer 结构的自回归语言...
本教程介绍了 FastAPI 的基本使用,包括接口定义、数据模型、数据校验、依赖注入、中间件及接口文档。通过示例代码,展示了如何快速构建高性能 API 服务,适...
在 Transformer 模型中,输入的词向量是没有顺序信息的,比如:我爱你 和 你爱我 两个含义不同句子,在注意力计算时,每个 Token 的表示是相同的,...
在 Python 中,不可序列化对象 指的是无法直接使用 pickle 等序列化模块转换为可存储或传输格式的对象。常见的不可序列化对象包括: 下面,我们介绍两种...
变分自编码器(VAE)是一种深度生成模型。它主要由 编码器(Encoder) 和 解码器(Decoder) 两部分组成: 1. 基本思想 假设模型想要知道如何生...
在自然语言处理(NLP)里,中英翻译是个常见的任务。但中文和英文在 语法、词序、表达方式 上差别很大,所以想要让机器做好翻译并不容易。不过,随着大模型技术的发展...
对联是中国传统文化中的一项独特艺术形式,它不仅要求上下句字数相同,还要对仗工整、意义相对。随着人工智能和自然语言处理技术的进步,如何让机器自动生成符合对联规律的...
在构建基于大语言模型(LLM)的智能应用中,处理原始文档是非常关键的一步。LangChain 作为一个强大的框架,提供了一整套用于文档处理的工具链,帮助开发者更...
在 LangChain 中,缓存机制是一种用于提升语言模型调用效率、降低成本的重要手段。其核心思想是:将提示词的响应结果缓存起来,在后续遇到相同或相似的请求时直...
在 LangChain 中,Tool 是一种把 Python 函数和它的调用规范(schema)包装起来的机制,这样模型就可以“请求”调用这个函数并传入参数。 ...
在使用 LangChain 构建对话系统时,聊天记录的管理、处理是至关重要的一环。本篇文章主要介绍如何存储对话历史,以及如何对对话历史进行处理。 1. 对话历史...
LangChain 是一个用于构建语言模型应用的强大框架,它支持将多个 链”(Chain)组合起来进行复杂的推理任务。所谓 链式调用,就是将多个处理步骤像流水线...
LangChain 中的 输出解析器(Output Parser) 主要作用是:将大语言模型生成的原始文本转换为结构化的数据格式,方便后续程序处理。比如,你让模...