Google gRPC(Google Remote Procedure Call)是一个高性能、开源的远程过程调用框架,它允许客户端直接调用远程服务器上的方法,就像调用本地方法一样,屏蔽了网络通信的复杂性。 1. 配置安...
本课程介绍如何利用文本向量表示实现零样本文本分类,无需人工标注,无需模型训练,通过语义匹配即可完成新类别的识别。适合希望提升分类灵活性、降低训练成本的 NLP 从业者与爱好者。
在 C++ 多线程编程中,线程局部存储(Thread Local Storage)是一项非常重要且值得深入理解的技术。它在提升线程安全性、简化并发设计中发挥着关键作用,是每一位 C++ 开发者都应掌握的核心知识之一。
在现代 Python 开发中,随着应用对高并发、高性能的需求不断增加,传统同步编程方式在处理大量 I/O 操作时逐渐显得力不从心。异步编程通过极大提升程序的并发能力和资源利用率,成为了Web开发、微服务、实时通讯、数据抓...
在现代 Python 开发中,随着应用对高并发、高性能的需求不断增加,传统同步编程方式在处理大量 I/O 操作时逐渐显得力不从心。异步编程通过极大提升程序的并发能力和资源利用率,成为了Web开发、微服务、实时通讯、数据抓...
基于 dify + xinference + ChatTTS + SenseVoiceSmall 实现语音聊天助手。
我们要实现的效果是基于 dify + xinference + ChatTTS + SenseVoiceSmall 实现语音聊天助手: 具体效果如下: 在这个过程中,我们需要做以下几件事情: 1. 语音模型部署 我们通过...
在由大型语言模型(LLM)驱动的应用开发中,模型的调用与管理始终是核心环节。LangChain 通过提供统一而灵活的模型接口,大大简化了开发者与各类语言模型、文本嵌入模型之间的交互流程。例如:OpenAI 的 GPT 系...
提示用于优化模型输入,提升生成结果的质量。LangChain 提供了强大的提示管理工具,包括提示模板和提示优化功能。提示模板是预定义的格式,包含静态文本和动态变量,用于生成发送给语言模型的输入。它们有助于确保交互的一致性...
LangChain 中的 输出解析器(Output Parser) 主要作用是:将大语言模型生成的原始文本转换为结构化的数据格式,方便后续程序处理。比如,你让模型输出一个 JSON、一个列表或某种特定格式的内容,输出解析...
在使用 LangChain 构建对话系统时,聊天记录的管理、处理是至关重要的一环。本篇文章主要介绍如何存储对话历史,以及如何对对话历史进行处理。 1. 对话历史存储 LangChain 提供了多种灵活的聊天历史记录管理方...
在 LangChain 中,缓存机制是一种用于提升语言模型调用效率、降低成本的重要手段。其核心思想是:将提示词的响应结果缓存起来,在后续遇到相同或相似的请求时直接复用,从而避免重复调用模型。 1. 缓存策略 目前 Lan...
在 LangChain 中,Tool 是一种把 Python 函数和它的调用规范(schema)包装起来的机制,这样模型就可以“请求”调用这个函数并传入参数。 1. 工具定义 2. 工具使用
LangChain 是一个用于构建语言模型应用的强大框架,它支持将多个 链”(Chain)组合起来进行复杂的推理任务。所谓 链式调用,就是将多个处理步骤像流水线一样依次串联,每个步骤的输出作为下一个步骤的输入,这种模式非...
在构建基于大语言模型(LLM)的智能应用中,处理原始文档是非常关键的一步。LangChain 作为一个强大的框架,提供了一整套用于文档处理的工具链,帮助开发者更高效地将非结构化文本转化为模型可理解的结构化信息。整个文档处...