基于 KG 问答系统 – 知识图谱

我们构建一个《水浒传》中 108 好汉的知识图谱,问答系统的设置问题围绕该知识图谱设计。这一步主要包含两部分:

  1. 爬取数据
  2. 构建图谱

1. 爬取数据

数据中一部分从百度百科爬取,一部分则手动构建。

import requests
from bs4 import BeautifulSoup
import json
import re
from pyhanlp import JClass


headers = {'User-Agent': open('header.txt').read().strip()}
cookies = {}
for item in open('cookie.txt').read().strip().split('; '):
    index = item.find('=')
    key = item[:index]
    val = item[index + 1:]
    cookies[key] = val


def get_base_info():
    """获得英雄的基本信息"""

    cookies = {}
    for item in open('cookie.txt').read().strip().split('; '):
        index = item.find('=')
        key, val = item[:index], item[index + 1:]
        cookies[key] = val

    request_url = 'https://baike.baidu.com/item/%E4%B8%80%E7%99%BE%E5%8D%95%E5%85%AB%E5%B0%86/19408?fr=aladdin'
    response = requests.get(request_url, headers=headers, cookies=cookies)
    soup = BeautifulSoup(response.text, features='lxml')
    base_info = []

    # 36天罡
    table = soup.find('table', attrs={'data-id': 'gntl9fqdtx'})
    for tr in table.find_all('tr')[1:]:
        rank, starname, nickname, realname, _, _, position = tr.get_text(' ').split()
        base_info.append(f'{realname} {starname} {rank} {nickname} {position}\n')

    # 72地煞
    table = soup.find('table', attrs={'data-id': 'gntl9fr8r7'})
    for tr in table.find_all('tr')[1:]:
        rank, starname, nickname, realname, _, _, postion = tr.get_text(' ').split()
        base_info.append(f'{realname} {starname} {rank} {nickname} {position}\n')

    open('data/spider_base.txt', 'w').writelines(base_info)


def get_lemma_id():
    """lemma_id用于拼接相应英雄的百科地址"""

    lemma_ids = []
    for pn in range(1, 10):
        request_url = f'https://baike.baidu.com/starmap/api/getlemmalist?lemmaId=711115&nodeId=ab7fe1266a9e3bec11029341&pn={pn}&rn=50'
        response = requests.get(request_url, headers=headers)
        if response.status_code != 200:
            continue
        response = json.loads(response.text)
        name_list = response['data']['list']
        if name_list == []:
            break
        for name in name_list:
            lemma_ids.append(f"{name['lemmaTitle']} {name['lemmaId']}\n")

    # 存储请求地址
    open('data/spider_lemmaid.txt', 'w').writelines(lemma_ids)



def get_description():
    """获得英雄描述"""

    descriptions = []
    for line in open('data/spider_lemmaid.txt'):
        name, lemma_id = line.split()
        request_url = f'https://baike.baidu.com/item/{name}/{lemma_id}'
        response = requests.get(request_url, headers=headers, cookies=cookies)
        soup = BeautifulSoup(response.text, features='lxml')
        if soup.title.string.strip() == '百度百科-验证':
            print('百度反爬,抓取内容失败。')
            return
        paragraph = soup.find_all('div', attrs={'class': 'para MARK_MODULE', 'label-module': 'para'})
        # 只读取第一段的介绍内容
        paragraph = paragraph[0]
        # 去除内容中的 HTML 标签
        description = paragraph.get_text()
        # 去除 [1]、[15] 这样的内容
        description = re.sub(r'\[\d+\]', '', description)
        description = re.sub(r'\[\d+-\d+\]', '', description)
        description = ''.join(description.split())
        descriptions.append(f'{name} {description}\n')

    open('data/spider_desc.txt', 'w').writelines(descriptions)


if __name__ == '__main__':
    get_base_info()
    get_lemma_id()
    get_description()

2. 构建图谱

这一步实际包含两个任务,一个是将知识图谱中的实体单独生成自定义字典文件,以提高 jieba、hanlp 在做分词、实体抽取时的准确性。

from py2neo import Graph
from py2neo import Node
from py2neo import Relationship
from py2neo import Subgraph
import pickle
from pyhanlp import JClass


frequency = 99999
custom_dict_path = '../../nlu/userdict/'
part_of_speech = {'name': 'hh', 'star': 'xx', 'nick': 'wh', 'faction': 'px', 'relation': 'gx', 'position': 'gz'}
open(custom_dict_path + 'special.txt', 'w').writelines([f'{word} {frequency} ts\n' for word in part_of_speech.values()])


def process_hero():
    """构建英雄名字列表"""

    hero_name = []
    for line in open('../spider/data/spider_lemmaid.txt'):
        name, _ = line.strip().split()
        name = name.strip()
        hero_name.append(name)

    pickle.dump(hero_name, open('data/hero_name.list', 'wb'))


def process_base():
    """构建英雄基本信息字典"""

    hero_base = {}
    real_words, star_words, nick_words, position_words = [], [], [], []  # 存储实体
    for line in open('../spider/data/spider_base.txt'):
        realname, starname, rank, nickname, position = line.strip().split()

        hero_base[realname] = {'ranking' : int(rank),
                               'starname': starname,
                               'nickname': nickname,
                               'position': position}
        real_words.append(realname)
        star_words.append(starname)
        nick_words.append(nickname)
        position_words.append(position)

    pickle.dump(hero_base, open('data/hero_base.dict', 'wb'))

    real_words = [f'{word} {frequency} {part_of_speech["name"]}\n' for word in set(real_words)]
    star_words = [f'{word} {frequency} {part_of_speech["star"]}\n' for word in set(star_words)]
    nick_words = [f'{word} {frequency} {part_of_speech["nick"]}\n' for word in set(nick_words)]
    position_words = [f'{word} {frequency} {part_of_speech["position"]}\n' for word in set(position_words)]

    open(custom_dict_path + 'name.txt', 'w').writelines(real_words)
    open(custom_dict_path + 'star.txt', 'w').writelines(star_words)
    open(custom_dict_path + 'nick.txt', 'w').writelines(nick_words)
    open(custom_dict_path + 'position.txt', 'w').writelines(position_words)


def process_desc():
    """构建英雄描述字典"""

    hero_desc = {}
    normalize = JClass('com.hankcs.hanlp.dictionary.other.CharTable')
    for line in open('../spider/data/spider_desc.txt'):
        realname, desc = line.strip().split()
        desc = ''.join(desc.split())
        desc = normalize.convert(desc)
        hero_desc[realname] = {'description': desc}
    pickle.dump(hero_desc, open('data/hero_desc.dict', 'wb'))


def process_result():
    """构建英雄结局字典"""

    hero_result = {}
    for line in open('../spider/data/manual_result.txt'):
        name_list, result = line.strip().split()
        hero_list = name_list.split('、')
        for name in hero_list:
            name = name.strip()
            hero_result[name] = {'result': result}
    pickle.dump(hero_result, open('data/hero_result.dict', 'wb'))


def process_relation():
    """关系词加入到分词词典中"""

    relation_words = []
    for line in open('../spider/data/manual_relation.txt'):
        _, _, re1, re2 = line.strip().split()
        relation_words.extend([re1, re2])
    relation_words = [f'{word} {frequency} {part_of_speech["relation"]}\n' for word in set(relation_words)]
    open(custom_dict_path + 'relation.txt', 'w').writelines(relation_words)


def hero_to_neo4j():
    """信息存储入库"""

    graph = Graph('http://localhost:7474', name='neo4j', auth=('neo4j', 'jay332572'))
    try: graph.delete_all()
    except: pass

    hero_base = pickle.load(open('data/hero_base.dict', 'rb'))
    hero_desc = pickle.load(open('data/hero_desc.dict', 'rb'))
    hero_name = pickle.load(open('data/hero_name.list', 'rb'))
    hero_result = pickle.load(open('data/hero_result.dict', 'rb'))

    # 补充信息
    for name in hero_name:
        if name not in hero_result:
            hero_result[name] = {'result': '未知'}

    # 创建节点
    nodes = {}
    for name in hero_name:
        node = Node('hero', name=name)
        node.update(hero_base[name])
        node.update(hero_desc[name])
        node.update(hero_result[name])
        nodes[name] = node

    # 创建关系
    relations = []
    for line in open('../spider/data/manual_relation.txt'):
        name1, name2, re1, re2 = line.strip().split()
        node1, node2 = nodes[name1], nodes[name2]
        # re1 为大类关系,双方向, re2 为小类关系,单方向
        relation = Relationship(node1, re2, node2, type=re1)
        relations.append(relation)

    # 信息存储
    sub_graph = Subgraph(nodes.values(), relations)
    graph.create(sub_graph)


if __name__ == '__main__':
    process_hero()
    process_base()
    process_desc()
    process_result()
    process_relation()
    hero_to_neo4j()
未经允许不得转载:一亩三分地 » 基于 KG 问答系统 – 知识图谱
评论 (0)

2 + 4 =