SoftMax 函数是深度学习和机器学习中一个非常重要的概念,主要用于处理多分类问题。Softmax 函数能够将一个实数向量映射为一个概率分布,使得输出向量的所...
聚类(Clustering)指的是将一组数据点按照某种规则或者方法分成多个组或簇,使得同一组内的数据点在某种意义上更相似,而不同组之间的数据点相对较不相似。 聚...
Product Quantization 是一种有效的近似最近邻搜索方法,具有较高的搜索效率和较低的内存消耗。该方法已被广泛应用于图像检索、文本检索和机器学习等...
随机森林(Random Forest)是一种基于集成学习思想的监督学习算法,广泛用于分类和回归任务。随机森林在很多不同的领域表现出色,如金融市场预测、客户流失预...
随机森林(Random Forest)能够用于分类和回归任务。通过两个应用案例来学习如何使用随机森林来解决分类和回归问题,以及算法的基本原理。 1. 算法使用 ...
对于随机森林算法而言,预测过程非常简单,易于理解。理解的重点是其如何训练多个基学习器来构建强学习器。 1. 有放回采样 随机森林基于原始训练集通过有放回的采样(...
scikit-learn 提供了 RandomForestClassifier 和 RandomForestRegressor 两个随机森林的实现,用于分类和回...
Complement Naive Bayes (CNB) 是对多项式朴素贝叶斯 (Multinomial Naive Bayes, MNB) 的一种改进。它主要...
前置要求:了解 Word2Vec 中的 Skip-Gram 和 CBOW 模型,以及负采样、层次 SoftMax 知识。 FastText 在 2016 年发布...
词向量就是将自然语言中的词使用数值向量表示,例如我们将每个词使用 5 维向量表示: 词向量可以是任意的维度,32、64、512、768、1024… ...
FastText 的预训练模型通常是使用大规模文本语料库进行训练得到的,因此可以捕获单词的语义和语法信息。这些预训练模型的优势在于它们可以为各种语言和领域提供通...
文本分类是一种自然语言处理(NLP)任务,旨在将文本数据分配到预定义的类别或标签中。在文本分类任务中,算法接收输入的文本数据,并根据其内容或语义特征将其分配到一...
FastText 提供了预训练的文本分类模型,它是在大规模文本数据上进行训练得到的,并且通常具有良好的泛化能力。这些预训练的分类模型可用于快速搭建文本分类系统,...
TF-IDF(Term Frequency – Inverse Document Frequency)是一种用于信息检索与文本挖掘的常用技术。 通过...
期望最大化算法(Expectation Maximization,EM) 是一种基于不完整、包含隐变量观测数据进行统计模型参数估计的方法。 我们知道,统计模型中...
终身学习者 | 知识桥接者
我是一名 80 后,写过多年代码,讲过很多年课,积累了丰富经验。如今,想把这些经验整理,通过我的博客分享给大家。